Kalkuleta na Tsarin Lissafi Mai Girma Biyu

Warware tsarin lissafi mai girma biyu ax² + bx + c = 0 tare da cikakkun matakai na warwarewa da kuma nazarin hoto

Yadda Ake Amfani da Kalkuleta na Tsarin Lissafi Mai Girma Biyu

  1. Shigar da ma'aunai a, b, da c na tsarin lissafinka mai girma biyu ax² + bx + c = 0
  2. Ka lura cewa ma'auni 'a' ba zai iya zama sifili ba (in ba haka ba, ba tsarin lissafi mai girma biyu bane)
  3. Yi amfani da maɓallan misalai don gwada nau'ikan tsarin lissafi mai girma biyu daban-daban
  4. Duba tsarin lissafin da ke bayyana kai tsaye don ganin an tsara shi yadda ya kamata
  5. Duba mai bambancewa don fahimtar nau'in amsoshin da za a sa ran
  6. Duba warwarewa mataki-mataki don fahimtar yadda ake warwarewa
  7. Yi nazarin tsayi da layin daidaito don fahimtar hoto

Fahimtar Tsarin Lissafi Mai Girma Biyu

Tsarin lissafi mai girma biyu shine tsarin lissafi na polynomial mai girma 2, wanda aka rubuta a siffa ta yau da kullun ax² + bx + c = 0, inda a ≠ 0.

Ma'auni 'a'

Ma'aunin x². Yana tantance ko parabola tana buɗewa sama (a > 0) ko ƙasa (a < 0).

Importance: Ba zai iya zama sifili ba. Mafi girman |a| yana sa parabola ta zama kankanta.

Ma'auni 'b'

Ma'aunin x. Yana shafar matsayin kwance na tsayi da layin daidaito.

Importance: Zai iya zama sifili. Tare da 'a', yana tantance matsayin x na tsayi: x = -b/(2a).

Ma'auni 'c'

Lambar da ba ta canzawa. Tana wakiltar matsayin y na parabola (inda take ratsa layin y).

Importance: Zai iya zama sifili. Wurin (0, c) shine inda parabola ke ratsa layin y.

Dabarar Tsarin Lissafi Mai Girma Biyu

Dabarar tsarin lissafi mai girma biyu hanya ce ta duniya don warware kowane tsarin lissafi mai girma biyu ax² + bx + c = 0.

Δ = b² - 4ac

x = (-b ± √(b² - 4ac)) / (2a)

Discriminant: Δ = b² - 4ac

Mai bambancewa (Δ) yana tantance yanayi da adadin amsoshi

-b

Kishiyar ma'auni b

Purpose: Yana sa amsoshin su kasance a tsakiyar layin daidaito

±√Δ

Tara/ragi tushen murabba'i na mai bambancewa

Purpose: Yana tantance nisan amsoshin daga tsakiya

2a

Sau biyu na babban ma'auni

Purpose: Yana daidaita amsoshin bisa ga faɗin parabola

Fahimtar Mai Bambancewa

Mai bambancewa Δ = b² - 4ac yana gaya mana game da yanayin amsoshin kafin mu kirga su.

Δ > 0

Sakamako: Amsoshi biyu daban-daban na hakika

Parabola tana ratsa layin x a wurare biyu. Amsoshin lambobi ne na hakika.

Misali: x² - 5x + 6 = 0 yana da Δ = 25 - 24 = 1 > 0, don haka akwai amsoshi biyu na hakika.

A hoto: Parabola tana ratsa layin x sau biyu

Δ = 0

Sakamako: Amsa daya ta hakika da ke maimaita kanta

Parabola tana taɓa layin x a wuri daya kacal (tsayi yana kan layin x).

Misali: x² - 4x + 4 = 0 yana da Δ = 16 - 16 = 0, don haka akwai amsa daya da ke maimaita kanta x = 2.

A hoto: Parabola tana taɓa layin x a tsayi

Δ < 0

Sakamako: Amsoshi biyu masu rikitarwa

Parabola ba ta ratsa layin x. Amsoshin sun haɗa da lambobi na tunani.

Misali: x² + 2x + 5 = 0 yana da Δ = 4 - 20 = -16 < 0, don haka akwai amsoshi masu rikitarwa.

A hoto: Parabola ba ta ratsa layin x

Hanyoyin Warware Tsarin Lissafi Mai Girma Biyu

Dabarar Tsarin Lissafi Mai Girma Biyu

Lokacin amfani: Koyaushe tana aiki ga kowane tsarin lissafi mai girma biyu

Matakai:

  1. Gano a, b, c
  2. Kirga mai bambancewa Δ = b² - 4ac
  3. Yi amfani da dabarar x = (-b ± √Δ)/(2a)

Amfani: Hanya ta duniya, tana nuna mai bambancewa

Rashin Amfani: Zai iya haɗawa da lissafi mai rikitarwa

Rarrabawa

Lokacin amfani: Lokacin da za a iya rarraba tsarin lissafin cikin sauƙi

Matakai:

  1. Rarraba ax² + bx + c zuwa (px + q)(rx + s)
  2. Saita kowane bangare zuwa sifili
  3. Warware px + q = 0 da rx + s = 0

Amfani: Mai sauri lokacin da rarrabawar ta fito fili

Rashin Amfani: Ba duk tsarin lissafi mai girma biyu bane ke rarrabuwa cikin sauƙi

Cika Murabba'i

Lokacin amfani: Lokacin canzawa zuwa siffar tsayi ko fitar da dabarar tsarin lissafi mai girma biyu

Matakai:

  1. Sake tsara zuwa x² + (b/a)x = -c/a
  2. Ƙara (b/2a)² zuwa bangarorin biyu
  3. Rarraba bangaren hagu a matsayin cikakken murabba'i

Amfani: Yana nuna siffar tsayi, mai kyau don fahimta

Rashin Amfani: Matakai da yawa fiye da dabarar tsarin lissafi mai girma biyu

Zane

Lokacin amfani: Don fahimtar gani ko amsoshi na kusa

Matakai:

  1. Zana parabola y = ax² + bx + c
  2. Nemo wuraren da ke ratsa layin x inda y = 0
  3. Karanta amsoshin daga hoton

Amfani: Na gani, yana nuna dukkan siffofi

Rashin Amfani: Wataƙila ba zai ba da ainihin darajoji ba

Aikace-aikacen Tsarin Lissafi Mai Girma Biyu a Rayuwar Yau da Kullun

Fizika - Motsin Abu da Aka Harba

Tsayin abubuwan da aka harba yana bin tsarin lissafi mai girma biyu

Tsarin Lissafi: h(t) = -16t² + v₀t + h₀

Masu Canji: h = tsayi, t = lokaci, v₀ = saurin farko, h₀ = tsayin farko

Matsala: Yaushe abu zai bugi ƙasa? (warware ga t lokacin da h = 0)

Kasuwanci - Inganta Riba

Kudin shiga da riba galibi suna bin tsarin lissafi mai girma biyu

Tsarin Lissafi: P(x) = -ax² + bx - c

Masu Canji: P = riba, x = adadin da aka siyar, ma'aunai sun dogara da farashi

Matsala: Nemo adadin da zai kara riba (tsayin parabola)

Injiniyanci - Tsarin Gada

Lanƙwasa na parabola suna rarraba nauyi yadda ya kamata

Tsarin Lissafi: y = ax² + bx + c

Masu Canji: Yana bayyana lanƙwasar igiyoyin gadar rataye

Matsala: Tsara siffar igiya don ingantaccen rarraba nauyi

Noma - Inganta Wuri

Ƙara faɗin wuri da kewaye da aka sani

Tsarin Lissafi: A = x(P - 2x)/2 = -x² + (P/2)x

Masu Canji: A = faɗin wuri, x = faɗi, P = shingen da ke akwai

Matsala: Nemo ma'aunai da za su kara faɗin wurin da aka kewaye

Fasaha - Sarrafa Sigina

Tsarin lissafi mai girma biyu a cikin matatun dijital da tsarin eriya

Tsarin Lissafi: Siffofi daban-daban dangane da aikace-aikace

Masu Canji: Amsar mita, ƙarfin sigina, lokaci

Matsala: Inganta ingancin sigina da rage tsangwama

Magani - Yawan Magani

Matsayin magani a cikin jini a tsawon lokaci

Tsarin Lissafi: C(t) = -at² + bt + c

Masu Canji: C = yawa, t = lokaci bayan an sha magani

Matsala: Tabbatar da mafi kyawun tazarar shan magani

Kura-kurai da Aka Saba Yi Wajen Warware Tsarin Lissafi Mai Girma Biyu

KUSKURE: Mancewa da ± a cikin dabarar tsarin lissafi mai girma biyu

Matsala: Neman amsa daya kacal alhali akwai biyu

Amsa: Koyaushe a haɗa duka + da - lokacin da mai bambancewa ya fi > 0

Misali: Ga x² - 5x + 6 = 0, duka x = 2 da x = 3 amsoshi ne

KUSKURE: Sanya a = 0

Matsala: Tsarin lissafin ya zama na layi, ba mai girma biyu ba

Amsa: Tabbatar cewa ma'aunin x² ba sifili bane ga tsarin lissafi mai girma biyu

Misali: 0x² + 3x + 2 = 0 a zahiri shine 3x + 2 = 0, tsarin lissafi na layi

KUSKURE: Kura-kuran lissafi da lambobi marasa kyau

Matsala: Kura-kuran alama yayin kirga mai bambancewa ko amfani da dabara

Amsa: A kula da alamun ragi, musamman da b² da -4ac

Misali: Ga x² - 6x + 9, mai bambancewa shine (-6)² - 4(1)(9) = 36 - 36 = 0

KUSKURE: Fassarar amsoshi masu rikitarwa da ba daidai ba

Matsala: Tunani cewa tsarin lissafin ba shi da amsa lokacin da mai bambancewa ya kasa < 0

Amsa: Amsoshi masu rikitarwa suna da inganci a lissafi, kawai ba lambobi na hakika bane

Misali: x² + 1 = 0 yana da amsoshi x = ±i, waɗanda lambobi ne masu rikitarwa

KUSKURE: Jerin ayyuka da ba daidai ba

Matsala: Kirga mai bambancewa da ba daidai ba

Amsa: Ka tuna b² - 4ac: fara da murabba'in b, sannan ka cire 4ac

Misali: Ga 2x² + 3x + 1, mai bambancewa shine 3² - 4(2)(1) = 9 - 8 = 1

KUSKURE: Zagayawa da wuri

Matsala: Kura-kuran zagayawa da aka tara a cikin lissafi mai matakai da yawa

Amsa: A kiyaye cikakken daidaito har zuwa amsar ƙarshe, sannan a zagaya yadda ya kamata

Misali: Yi amfani da cikakken darajar mai bambancewa a cikin dabarar tsarin lissafi mai girma biyu, ba sigar da aka zagaya ba

Yanayi na Musamman da Tsare-tsare

Cikakkun Murabba'ai na Uku

Siffa: a²x² ± 2abx + b² = (ax ± b)²

Misali: x² - 6x + 9 = (x - 3)²

Amsa: Tushe daya da ke maimaita kanta: x = 3

Ganewa: Mai bambancewa daidai yake da sifili

Bambancin Murabba'ai

Siffa: a²x² - b² = (ax - b)(ax + b)

Misali: x² - 16 = (x - 4)(x + 4)

Amsa: Tushe biyu masu kishiyantar juna: x = ±4

Ganewa: Babu kalmar layi (b = 0), lambar da ba ta canzawa mara kyau

Kalmar Layi da ta Bace

Siffa: ax² + c = 0

Misali: 2x² - 8 = 0

Amsa: x² = 4, don haka x = ±2

Ganewa: Kawai kalmomin x² da waɗanda ba sa canzawa ne ke nan

Kalmar da Ba ta Canzawa da ta Bace

Siffa: ax² + bx = 0 = x(ax + b)

Misali: 3x² - 6x = 0 = 3x(x - 2)

Amsa: x = 0 ko x = 2

Ganewa: Fara da rarraba x

Tambayoyi da Amsoshi kan Tsarin Lissafi Mai Girma Biyu

Me ke sa tsarin lissafi ya zama mai girma biyu?

Tsarin lissafi yana da girma biyu idan mafi girman iko na mai canji shine 2, kuma ma'aunin x² ba sifili bane. Dole ne ya kasance a siffar ax² + bx + c = 0.

Shin tsarin lissafi mai girma biyu zai iya zama ba shi da amsa?

Tsarin lissafi mai girma biyu koyaushe yana da amsoshi 2 daidai, amma suna iya zama lambobi masu rikitarwa lokacin da mai bambancewa ya kasance mara kyau. A cikin lambobi na hakika, babu amsoshi lokacin da Δ < 0.

Me yasa wani lokaci muke samun amsa daya maimakon biyu?

Lokacin da mai bambancewa = 0, muna samun amsa daya da ke maimaita kanta (wanda ake kira tushe biyu). A lissafi, har yanzu amsoshi biyu ne da suka zama iri daya.

Me mai bambancewa ke gaya mana?

Mai bambancewa (b² - 4ac) yana tantance nau'ikan amsoshi: mai kyau = amsoshi biyu na hakika, sifili = amsa daya da ke maimaita kanta, mara kyau = amsoshi biyu masu rikitarwa.

Ta yaya zan san wace hanya zan yi amfani da ita?

Dabarar tsarin lissafi mai girma biyu koyaushe tana aiki. Yi amfani da rarrabawa idan tsarin lissafin yana da sauƙin rarrabawa. Yi amfani da cika murabba'i don fahimta ko canzawa zuwa siffar tsayi.

Idan ma'auni na 'a' mara kyau ne fa?

Babu matsala! Dabarar tsarin lissafi mai girma biyu tana aiki da ma'aunai marasa kyau. Kawai a kula da alamomi yayin kirga mai bambancewa da amfani da dabarar.

Shin zan iya warware tsarin lissafi mai girma biyu ba tare da dabarar ba?

I! Zaka iya rarrabawa (idan zai yiwu), cika murabba'i, ko zana hoto. Koyaya, dabarar tsarin lissafi mai girma biyu ita ce hanya mafi inganci ta duniya.

Don me ake amfani da amsoshi masu rikitarwa?

Amsoshi masu rikitarwa suna bayyana a fannin injiniyanci, fizika, da kuma lissafi mai zurfi. Suna wakiltar muhimman alaƙoƙin lissafi koda kuwa ba 'na hakika' bane a ma'anar yau da kullun.

Cikakken Jagoran Kayan Aiki

Dukan kayan aiki 71 da ke akwai a kan UNITS

Tace ta:
Rukuni:

Ƙari